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Abstract
Being able to collect rich morphological information of brain, structural magnetic resonance
imaging (MRI) is popularly applied to computer-aided diagnosis of Alzheimer’s disease
(AD). Conventional methods for AD diagnosis are labor-intensive and typically depend on a
substantial amount of hand-crafted features. In this paper, we propose a novel framework of
convolutional neural network that aims at identifying AD or normal control, and mild cog-
nitive impairment or normal control. The centerpiece of our method are pseudo-3D block
and expanded global context block which are integrated into residual block of backbone in
a cascaded manner. To be specific, we transfer pseudo-3D block in the video feature repre-
sentation to extract structural MRI features. Besides, we extend the 2D global context block
to the 3D model which can effectively combine the features and capture the latent associa-
tions, while simulate the global context in each dimension of structural MRI results. With
the preprocessed structural MRI used as the input of the overall network, our method is
capable of constructing a latent representation with multiple residual blocks to promote the
classification accuracy. Intrinsically, our method reduces the complexity of conventional 3D
convolutional network model applied to AD diagnosis and improves the classification accu-
racy over the baseline. Furthermore, our network can fully take advantage of the deep 3D
convolutional neural network for automatic feature extraction and representation, and thus
avoids the limitation of low processing efficiency caused by the preprocessing procedure in
which a specific area needs to be annotated in advance. Experimental results on Alzheimer’s
Disease Neuroimaging Initiative database indicate that our proposed method reports accu-
racy of 89.29% on the AD/NC and 87.57% on the mild cognitive impairment/NC, whilst
our approach achieves the 0.5% improvement of accuracy compared with the backbone.
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1 Introduction

Alzheimer’s disease (AD) is a common progressive neurodegenerative disorder character-
ized by the change of key parts like temporal lobe, hippocampus, parahippocampal gyrus,
cingulate gyrus, thalamus, precuneus, insula, amygdala, fusiform gyrus and medial frontal
cortex in our brain [11, 34]. In the process of AD formation, neurons related to AD in
the brain gradually atrophy and disappear [28]. While AD has horribly sprouted in some-
body for lengthy stretches of time, it is difficult for a non-expert to realize its existence,
which results in the deterioration of the AD status. Although effective drugs have not been
developed, fortunately, massive research efforts home in on capturing underlying repre-
sentation for AD’s early diagnosis and treatment [14, 18]. It is widely acknowledged that
normal control (NC) populations are those who do not have any representations in struc-
tural magnetic resonance imaging (MRI), while most AD patients reveal specific symptoms
based on destroyed magnitude to their health. In other words, clear clinical symptoms can
be reflected by medical images generated from medical imaging technology such as MRI
[29, 31]. It is expected that early AD diagnosis is beneficial for the elderly and particu-
larly those who are prone to AD. In this paper, we aim to use the convolutional neural
network(CNN) to automatically recognize structural MRI and classify them as NC or
AD [1, 15, 30].

With the great progress in machine learning, more and more efforts are devoted to
introducing the machine learning methods into research over the AD diagnosis, leading to
significant improvement in NC or AD classification performance [4, 5, 20, 26]. It is well
known that medical images benefit the diagnosis of many diseases with the help of the
computer in the current era of information technology. Particularly, they are indispensable
for AD’s diagnosis since medical images are capable of imaging these changes intuitively.
In terms of structural MRI classification, CNN based on computer-aided implementation
achieves far superior performance to the human diagnosis based on empirical observation
and experience. Actually, highly proficient physicians are insensitive to the areas with uni-
form characteristics in structural MRI when they work for a long time with low efficiency
and inaccurate classification. Nevertheless, the drawback the conventional manual methods
suffer can be largely overcome by CNN [15, 24] which encodes and decodes image fea-
tures with sufficient robustness of structural MRI efficiently and accurately. While great
success in structural MRI classification tasks is fueled by CNN-based methods, an increas-
ing number of researchers are devoted to combining structural MRI classification tasks with
CNN, since it is difficult to obtain desirable performance due to the inherent 3D property of
structural MRI.

Although 3D CNN is capable of capturing the original high-dimensional features of
structural MRI, the 3D CNN model with a huge number of trainable parameters is usually
complex, and thus incurs expensive computational costs and tremendous memory footprint.
Inspired by [22] which proposed a pseudo-3D (P3D) residual network in the field of video
classification and understanding, we utilize the decoupled 3D convolution in pseudo-3D
ResNet to substitute 3D convolutions in the bottleneck blocks of the backbone network.
Thus, the 3D structural MRI is decomposed and the 2D feature map is obtained. In this way,
we present a novel framework for classifying structural MRI collected from patients with
Alzheimer’s disease as NC or AD. To be specific, our method combines the advantages
of 2D convolution and 3D convolution to capture potential 3D structural information of a
series of related areas to AD in the brain. These information plays a crucial role in the final
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AD classification [28]. The experiments demonstrate our framework is effective in accu-
rately identifying AD based on the whole-brain structural MRI. Furthermore, our method
enjoys desirable generalization capability and exhibits promising performance on the mild
cognitive impairment (MCI)/NC.

Since the formation of AD is related to many areas of the brain [11], recognizing the rela-
tionship among these areas is conducive to more accurate identification of AD disease. To
further enhance representation learning of our network, we introduce global context (GC)
block [2] into our framework. GC block can effectively combine the features and capture
the latent associations, and simulate the global context in each dimension of structural MRI.
Simplifying the non-local (NL) block [27] to obtain simplified non-local (SNL) block, GC
block encodes SE block [9] and SNL block into three steps, and selects the best perform-
ing one from the two parts in each step. Compared with NL block, GC block optimizes
the computational process without sacrificing the accuracy. Besides, it enhances the ability
of feature expression without sacrificing the original lightweight property compared with
SE block. In this paper, the GC block is incorporated into our model to realize the long-
range feature representation. It highlights the characteristics of regions related to AD while
downplays the other irrelevant regions, and thus greatly improves the diagnosis accuracy.

In this paper, we attempt to improve the accuracy for AD diagnosis. Given a 3D struc-
tural MRI input, our framework decouples 3D convolution into 2D convolution plus 1D
convolution in different dimensions. Then, expanded GC block is used to generate the fea-
ture map with sufficient descriptive power from previous module for further performance
improvement. To sum up, we propose three main contributions:

First, we propose a novel framework with global context pseudo-3D module (GCP mod-
ule). Particularly, GCP module can be applied to classify structural MRI as NC or AD
without empirical experience involved. With the backbone combined with P3D module, our
model allows fast and efficient AD diagnosis. Therefore, it effectively reduces the com-
plexity of the conventional 3D convolution network model and alleviates the over-fitting
problem in the classification of structural MRI on AD.

Second, we extract rich representation of structural MRI relevant to AD in brain which is
of vital importance to the final AD classification. Overall, our method achieves significantly
better performance by utilizing GC block.

Finally, we avoid selecting a specific area in advance and improves the processing effi-
ciency by giving full play to the strong ability of automatic feature extraction and abstraction
of our network.

2 Related work

With the dramatic progress of artificial intelligence(AI) in various fields, Learning based
methods included in AI technology are widely applied to AD diagnosis. These methods
can be divided into two categories: traditional machine learning methods [13, 17, 19, 23,
32, 35] and recent deep learning methods [3, 8, 12, 25]. Traditional methods aim to extract
the features of pre-selected regions by using statistical methods, and then achieve image
classification by extracting the features of these regions. They have strong capability of
feature learning and have been widely used in the AD classification.

According to the scale of feature representation, traditional machine learning methods
can be divided into three categories: voxel-based approaches, region-based approaches and
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patch-based approaches [14]. Comparing the AD-related regions between the experimental
group and the healthy control group, the medial temporal structure and hippocampal volume
are related to the early markers of AD in [23]. Therefore, imaging biomarkers play an impor-
tant role in AD diagnosis. Zhu et al. [35] proposed a novel feature selection method, which
applied the relationship information inherent in the observation data to the diagnosis of
Alzheimer’s disease. Liu et al. [19] proposed a hierarchical ensemble classification method.
Specifically, they solve the classification problem of local and cross-brain region related
features in AD using bottom-up and local to global approach by segmenting brain images.
However, traditional machine learning methods usually depend on the human experience,
which often results in suboptimal performance.

Recent years have witnessed the boom of deep learning in feature extraction. It has been
applied to AD diagnosis and accurate matching between the 3D depth network and the 3D
images obtained by MRI. After analyzing structural MRI and classified AD based on gray
matter density of hippocampus volume and region of interest, Cheng et al. [3] proposed
a new method to extract features from local image blocks with multiple neural networks,
revealing promising performance for AD classification. Borrowing the idea of decomposing
large-scale problems into small-scale tasks, Lian et al. [14] proposed a hierarchical inte-
grated classification method. After a brain image is divided into several local brain regions,
local image features generated from local brain regions and regional correlation are com-
bined and used as the input of advanced feature extractor, leading to better classification
results. In [12], a novel method is proposed for AD diagnosis using 3D-CNN, It is capable of
learning to capture the general characteristics of AD biomarkers and adapting to data sets in
different fields. Suk et al. [25] combined sparse regression model with deep neural network
for the first time, proposing a method for clinical AD diagnosis. It selects different feature
subsets by multiple sparse regression models and take the results of sparse regression model
as the target.

Since the traditional machine learning schemes usually operate on a single region and
patch, it is difficult for them to characterize the global structure information of the structural
MRI in our work. It is easy to over-fit the simplistic networks, while it is difficult to capture
the global context information from the simplistic networks. With GC block integrated,
our model couples machine learning and the complex network paradigm for AD/NC or
MCI/NC. It effectively extract long-range context, such that the features of related areas in
the structural MRI on AD can be fully captured. This ensures our approach works in the
tasks of feature extraction and classification related to Alzheimer’s disease diagnosis [14].
It is well known that the model complexity and high dimensionality of 3D structural MRI
largely hinder hindering the accuracy of AD classification. Massive efforts are devoted to
alleviating this problem. Gao et al. [6] extracted 2D slice and 3D feature information of CT
by deep learning, and then fuse the two CNN features for subsequent processing. Zhang
et al. [33] proposed an unsupervised deep learning method based on Local Deep-Feature
Alignment(LDFA). It is capable of learning the local and global features of the data sample
set simultaneously. Particularly, our model integrates P3D block simplifies 3D convolutions
by 2D convolutional filters on spatial dimension plus 1D convolutions on depth dimension,
reducing the computational cost and improving the processing efficiency.

In the rest of the paper, we elaborate how to preprocess the selected data from ADNI and
the structure of our model in Section 3. Experimental setup and the analyses of experiment
results are presented to evaluate our model in Section 4. The discussion of our framework
is shown in the Section 5 before this paper is concluded in Section 6.



Multimedia Tools and Applications

3 Materials andmethods

In this section, we will give more details of our work about materials and components
in the model. The preprocessed steps of materials are introduced in Section 3.1, and the
components in the model are elaborated in the rest sections.

3.1 Materials

We train and evaluate our model on the data from the Alzheimer’s disease Neuroimaging
Initiative1 (ADNI) [10]. ADNI dataset is launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and nonprofit organizations. It serves as
one of most significant databases for AD diagnosis.

We preprocess the data containing 548 examples in which 146 examples belongs to AD,
256 examples indicate NC and the rest are MCI from the ADNI. Similar to [34], the pre-
processing process is completed with the property like voxel size for normalized images
changed by a series of steps using specialized tools of CAT2 attached to SPM3. We then
resliced the image into 224 × 224 × 91.

Figure 1 intuitively shows the CAT imaging of both AD and NC subjects before and after
data preprocessing. It can be clearly observed that after registration and segmentation, white
matter and gray matter closely related to AD is preserved, which is conducive to improving
classification performance. It is worth mentioning that there is the blurry difference between
the preprocessed images from different subjects. Therefore, the learning-based AD diagno-
sis automatically extracting features of data for computer-aided treatment can improve the
diagnosis accuracy and reduce the manual burden.

3.2 The overall architecture

The overall architecture of our framework is shown in Fig. 2. Our framework contains a GCP
module in which P3D block is combined with GC block used as bottleneck in the backbone.
[7] gives detailed introduction of the backbone of ResNet. The GCP module consists of GC
extractor with P3D block.

As illustrated in Fig. 2, our framework mainly consists of two components, a backbone
based on ResNet and an embedded module combining P3D and GC blocks. We use ResNet
as our backbone to classify structural MRI, since it is observed that it can effectively han-
dle the 3D structural MRI with sufficient trainable parameters. Besides, the models with
extremely complex structure exhibit excellent capability of learning the representations of
the input data, leading to the mismatch between the models and the hand-crafted ADNI
database. It is necessary that the input of our framework be distributed within a 3D cube
due to the inherent structural MRI 3D property. Finally, the post processing strategy based
on the last softmax layer is used for the final prediction.

1http://adni.loni.usc.edu/
2http://www.neuro.uni-jena.de/cat/
3https://www.fil.ion.ucl.ac.uk/spm-statistical-parametric-mapping/

http://adni.loni.usc.edu/
http://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm-statistical-parametric-mapping/
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Fig. 1 Illustrative examples before and after data preprocessing. Subgraph a and c respectively show one AD
and NC subject, while subgraph b and d illustrate the preprocessed one corresponding to a and c separately.
In each subgraph, the three windows show transverse plane, sagittal plane and coronal plane of the current
3D sample respectively from left to right

To accelerate the convergence of the training process, the preprocessed MRI image is
resized and normalized to obtain a 3D image. The normalization process can be expressed
as follows

Ihwd = Ihwd

Imax

(1)

where h, w and d denote the position of sampling point in the MRI image I, and Imax indi-
cates the maximal value in the structural MRI. The input of our framework is a 3D image
which is processed by the backbone with our bottleneck and the input size of each sample is
rescaled to 224 × 224 × 91 × 1. The samples are firstly processed by 7 × 7 × 1 convolution
and 3×3×3 max pooling. Subsequently, the resulting activations pass through consecutive
GCP modules containing P3D and GC block used as bottleneck in the backbone. Finally,
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Fig. 2 The overall architecture of our framework. The input of our framework is a 3D image which is pro-
cessed by the backbone with our bottleneck. The output of our framework is a vector of 2 × 1 indicating the
identified category of the input data. The number of GCP blocks is equal to 16. GAP means global average
pooling

fully-connected layer with the activation of softmax is followed after global average pool-
ing. The output of our framework is a vector of 2 × 1 indicating the category of the
input.

3.3 GCPmodule

In this part, we will introduce the GCP module in details, as shown in Fig. 3. We firstly
elaborate why P3D is effective for AD diagnosis followed by applying GC block to 3D MRI
after reviewing original 2D GC block [2]. Next, we demonstrate spatial-temporal represen-
tation learned by P3D allows effective description of the key features of structural MRI
in AD subjects, while we analyze how GC block captures the long-range dependency. In
particular, the P3D block decouples 3D convolution to two 2D convolution operations, effi-
ciently decreasing the complexity of our network compared with the baseline. Besides, the
global context block efficiently extracts latent representation of the input data and promotes
the discriminating capability of our proposed network.

In P3D block [22], three pseudo-3D architectures are proposed in respectively stacked,
parallel and mixed fashion. The stacked P3D architecture shown in Fig. 3 consists of 2D
filters to extract latent representation in 2D direction and 1D filters to extract latent repre-
sentation along the depth of input. Besides, it includes two 1 × 1 × 1 filters respectively
distributed in the beginning and the end of kernels 2D and 1D filters components. In other
terms, the input is convoluted by filters 1×1×1, 1×3×3, 3×1×1 and 1×1×1 in a cas-
caded manner, and the convolution result is aggregated to the input. Considering its success
in a great deal of deep learning tasks, we apply it to our model for feature representation.
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Fig. 3 The architecture of GCP module. It consists of a P3D block and a 3D GC block. Note that the convo-
lution operation in the shortcut flow is discarded when the dimension of input feature is consistent with that
of the output in the module

If not specified, P3D in the following text refers specifically to the cascaded architecture of
P3D. Please refer to [22] for more details of P3D.

In order to speed up the training process and improve the generalization performance of
the network, BatchNormalization(BN) is added before each activation function of ReLU.
The processing pipeline of P3D block can be mathematically formulated as

D = x + d(x) (2)

where x denotes input in this block, d(·) a family of convolutions with BN and ReLU before
each of filter, while D the final result of P3D in our method.

P3D enables decomposing 3D input into 2D and 1D input without significant loss of
descriptive power. The resulting representation is used to classify and reducing expensive
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computational cost. Furthermore, the representation along depth in 3D MRI is relevant,
making it easier to learn 3D feature evolution by embedded P3D. As discussed earlier, the
deterioration of AD is closely associated with the changes on areas related to AD clearly
rejected by 3D feature.

In GC block [2], In term of MRI classification in our method, the key component for
performance improvement is GC block which can capture long-range representation based
on the centering pixels of a patch. By adding the output features of bottleneck transformation
structure to the original feature map one by one, the global context feature map is aggregated
to each position of the original feature map, and thus the block can extract the features of
relation distributed in multiple disease-related areas more effectively. In [2], the input size
of GC block is H × W × C (H , W and C indicate the height, width and channel of the
input sample respectively). After being processed by context modeling module, the block
is resized to 1 × 1 × C, and then processed by transformation module. Finally, the original
feature and the transformed result are aggregated to generate the output of GC block.

Due to the inherent properties of MRI data, we have extended the 2D GC block to the
3D model shown in the Fig. 3. In our method, the size of the input data in the GC module is
H ×W ×D ×C. Firstly, the data is convoluted by a filter of size 1×1×1, and then resized
into HWD × C. After softmax operation, the result is multiplied by the resized feature to
obtain the intermediate result of size 1 × 1 × 1 × C. In the transformation step, we firstly
reduce channel C by reduction ratio times (reduction ratio is set to be the same as that of
[2]), and then perform 1 × 1 × 1 convolution followed by Group Normalization(GN) and
activation of ReLU. After another 1 × 1 × 1 convolution operation followed by ReLU, the
addition between temporary result and the original input are performed, yielding the output
of GC block. Similar to [2], the corresponding processing pipeline can be formulated as

G = F(xG, T (C(xG))) (3)

where xG represents the input of GC block, C(·) context modeling part, T (·) transform part,
F(·) fusion part with addition and G the result of GC block respectively.

In GCP module, convolution layers other than P3D convolution module adopt convolu-
tion kernel with size of 1 × 1 × 1. Before the last convolutional layer in the transformation
part of GC block, the group normalization is used to normalize the layer features. Context
modeling has great advantages in extracting features of all positions, whilst transforma-
tion module is also advantageous in capturing channel information features, providing a
sound basis for the fusion of the two modules to describe the features on each axis of 3D
image. The later experiments also show that GC block improves the detection accuracy,
demonstrating its effectiveness in processing 3D MRI images.

Mathematically, the first residual block in our framework used for processing structural
MRI and 3D feature learning is constructed as

RPG = Ihwd + F(d(Ihwd), T (C(d(Ihwd)))) (4)

where RPG denotes the feature generated from the bottleneck in the backbone. Meanwhile,
RPG is also the intermediate result in our model, since it will be used as the input of the next
residual block. In other words, it will replace the position of Ihwd when the next residual
block works. In this way, it will proceed until the last residual block of our network is
reached, leading to the final output Rlast .

Furthermore, the output layer of our model uses fully-connected (FC) layer to generate
an one-hot vector for each input image. Mathematically, it can be described as

z = FC(Rlast ) (5)
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where FC(.) denotes the fully-connected layer of our model. Finally, the softmax function
is used to generate the predicted category as follows

Pi = ezi

∑N
k=1 ezk

(6)

where N is the total number of categories in the AD, e represents the base number of the
natural logarithm function while z indicates the output vector with the same dimension as
the category number. Besides, i implies the category index, Pi is the probability value of the
class i, k lists the indexes of all categories, whilst zk suggests the k-th value of the output
vector.

In the forward propagation of the model, the cross entropy is used as the loss function for
model optimiztion. The value of the loss function indicates the training error of the whole
training set. The loss function can be expressed as

L = −
N∑

i=1

yi log Pi (7)

where yi is the indicator variable. In addition, Pi represents the probability that the predicted
samples of the model belong to category i. The back propagation algorithm calculates the
gradient of the loss function for all the weights in the network according to the chain deriva-
tion rule. For parameters update, this gradient is multiplied by a learning rate α , and then
reversed before adding it to the weight.

4 Results

In this section, we first introduce our experimental setup including the trainable parameters
and the hyper-parameters involved in our experiment. Then, common metrics are presented
to evaluate our method. Finally, comparative studies in which our proposed method is
compared with the classic approaches are carried out.

4.1 Experimental setup

We train the proposed method from scratch using ADNI dataset to assist the research over
the disease diagnosis by combining genetics, imaging and clinical data. In our scenario, we
select 548 examples from ADNI dataset containing 146 AD, 256 NC and 146 MCI. 402
samples are grouped into the training set and the test set to feed into our proposed network
in AD/NC or MCI/NC. It is noteworthy that each of the selected examples is preprocessed to
remove the areas irrelevant to our study. Particularly, the preprocessing details are shown in
Section 3.1. In addition, we train the proposed network in a five-fold cross validation manner
such that we can make full use of the limited training data and alleviate the risk of the over-
fitting to some extent. In particular, we randomly divide our data into five subsets, of which
four subsets are used for training while the rest for validation. Thus, final result is obtained
by averaging five intermediate results. In order to dynamically balance the efficiency and
accuracy, we adaptively adjust the learning rate in the training process. More specifically,
set as 1 × 10−3 initially, the learning rate changes to the initial value multiplied by the
coefficients of 0.5, 0.1, 0.05 and 0.01 respectively when the epoch grows up to 5, 10, 50 and
80. Therefore, more accurate results can be obtained with learning rate decay, preventing
the loss function from oscillating over a period of time. In addition, in order to downplay
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the unimportant features in the network, L2 regularization is adopted and the regularization
factor is set to 1 × 10−4.

For performance measure, ROC curve is used as evaluation metric in our experiments. It
records the relationship between false positive rate and true positive rate. The area under the
curve is termed area under curve (AUC) encoding the prediction accuracy. The larger AUC
value indicate the higher prediction accuracy. The optimal AUC value equals 1, suggesting
the best prediction accuracy is achieved. In Fig. 4 from the random fold among 5 folds,
our method achieves promising performance by reporting high prediction accuracy with
the AUC close to 1. This fully suggests the decomposed 3D module followed by a module
capturing long-rang latent representation is capable of encoding significant information for
AD and NC classification based on 3D structural MRI. In addition, the confidence interval
(CI) of ROC curve is given in Fig. 4, which reflects the performance of our method in
estimating the real value of totality.

In the training and validation process, we have used cross entropy as loss function which
is effective in our task. Figure 5 shows the training and validation curve of one random
fold in our five-fold cross validation. It can be observed that the training loss and validation
loss decrease with the increasing iterations. When the iterations amount to roughly 100,
the convergence is reached. Overall, the training loss is lower than the validation loss, and
the difference between the training loss and the validation loss is within a reasonable range
since all the training examples are involved in the network training.

Specifically, the accuracy score refers to the ratio of the number of correctly predicted
samples to all the samples taken into account. Figure 6 shows the training and validation
accuracy curves of one random fold of the five-fold cross validation. Overall, we observe
the performance improves as the number of iterations increases. It is easy to find that the
curve fluctuates greatly in the early stage of training, and tends to be stable in the late stage
of training due to the fast update of model parameters in the early stage of training but the
slow update in the late stage of training because of convergence.

Fig. 4 The ROC curve achieved by our method. tpr indicates true positive rate, fpr false positive rate. ROC
curve is mainly used for the prediction accuracy of X to y. Now it is usually used in the field of medicine to
judge whether a certain factor plays an extremely important role in diagnosis of a certain disease
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Fig. 5 The Loss curve of our model. The horizontal axis represents the number of iterations and the vertical
axis is loss value. There are two loss curves corresponding to training with the navy and validation with the
darkorange respectively

4.2 Comparative studies

In order to verify the effectiveness of our method, we have compared our method with the
other related methods in our comparative studies. Table 1 shows the results of ours and
those achieved by other methods. Note that we directly present the results of these com-
peting methods reported in the corresponding literatures. It can be seen that our method
achieves great performance, achieving a very high accuracy, which shows that our method
has strong capability to distinguish AD/NC. Although other methods have slightly higher

Fig. 6 Accuracy curve achieve by our method. The horizontal axis represents the number of iterations and the
vertical axis accuracy value. There are two loss curves corresponding to training with the navy and validation
with the darkorange respectively
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Table 1 Comparison of our
method and different classic
approaches

Methods Sample sizes Accuracy AUC Recall

Cheng et al. [3] 199 AD, 229 NC 0.8715 0.9226 0.8636

Liu et al. [16] 65 AD, 77 NC 0.8776 - 0.8857

Lian et al. [14] 358 AD, 429 NC 0.9000 0.9500 0.8200

Andres et al. [21] 70 AD, 68 NC 0.9000 0.9500 0.8600

Ours 146 AD, 256 NC 0.8929 0.9323 0.9219

Ours(MCI/NC) 146 MCI, 256 NC 0.8757 0.9069 0.9140

accuracy, we achieve higher sensitivity, which indicates that our method can effectively
diagnose AD from structural MRI samples. This can be explained by the fact we aggregate
the global context feature map to each position of the original feature map. In this way,
we effectively aggregate massive region-specific features such that the clinical feature is
extracted more effectively from the subject dataset. In addition, in order to verify the gener-
alization of our method and to effectively diagnose the early stage of AD, we evaluate our
method on MCI/NC and obtain 87.57% accuracy, as shown in Table 1. On the whole, our
method shows strong capability in the discrimination of AD, which benefits from the fact
that our proposed method improves the sensitivity to pathological characteristics and the
classification accuracy for structural MRI.

5 Discussion

In order to better illustrate the important role each part of our model plays in the perfor-
mance, ablation studies are conducted in our experiments. Table 2 reveals the performance
of our model with one or more additional components embedded. Each result is obtained
by training and validation on the same data set. The results also reveal the complemen-
tarity among different components of our model. First, the accuracy at 0.8879 is achieved
by the backbone network. Despite exhibiting superiority to some earlier architectures, fur-
ther performance improvement can be expected, since only the backbone network is used
for evaluation. Then, we integrate the P3D block into the backbone of the backbone archi-
tecture, achieving the accuracy at 0.8330. Replacing the basic block in ResNet with P3D
decreases the model performance, suggesting that P3D block decomposing 3D module to
2D and 1D elements mainly contributes to reduce the complexity of the model of AD clas-
sification. Next, we explore the complementary effect between P3D and GC block. To be
specific, we simultaneously combine P3D and GC on the basis of ResNet. The experimental
results reported with 0.8929 demonstrate the prediction accuracy is improved by incorpo-
rating the two blocks into ResNet model. As expected, the best experimental results are
obtained in this case. This is due to the strong long-range feature fusion capability of GC
block. In this way, the model effectively extracts the features closely related to the direct

Table 2 The performance of our
method when one or more
components are embedded

Backbone P3D GC Accuracy AUC Recall

√
0.8879 0.9166 0.9375√ √
0.8330 0.8874 0.8788√ √ √
0.8929 0.9323 0.9219
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area like hippocampus, while ignoring the features of other irrelevant parts. This also shows
the significantly beneficial effect of GC block along with the complementary effect between
GC and P3D blocks in effectiveness and complexity respectively.

6 Conclusions

In this paper, we propose a novel method for AD diagnosis. Integrating P3D and GC blocks,
our method allows accurate information aggregation. With GCP used as a block in the back-
bone, we demonstrate the promising performance achieved by our proposed convolutional
neural network, and show that GC block and P3D block extract complementary information
in the classification of structural MRI. Our method regards the preprocessed MRI as the
input of the overall network, and constructs a latent representation by multiple basic blocks
to promote high classification accuracy. With the capability of aggregating features and rep-
resenting global context, our approach is beneficial for the diagnosis of more AD-relevant
diseases such as Depression, Hypothyroidism and others in future work. Experiments on
the public ADNI dataset show that both of the two modules have significant contributions
to the final prediction results.
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